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Abstract 

The Intergovernmental Panel on Climate Change (IPCC) attributes observed climate variability 
primarily to anthropogenic CO₂ emissions, asserting that these emissions have driven approxi-
mately 1 Wm⁻² of net radiative forcing since 1750, resulting in a global temperature rise of 0.8-
1.1°C. This conclusion relies heavily on adjusted datasets and outputs from global climate models 
(GCMs) within the Coupled Model Intercomparison Project (CMIP) framework. However, this 
study conducts a rigorous evaluation of these assertions by juxtaposing them against unadjusted 
observational data and synthesizing findings from recent peer-reviewed literature. Our analysis 
reveals that human CO₂ emissions, constituting a mere 4% of the annual carbon cycle, are dwarfed 
by natural fluxes, with isotopic signatures and residence time data indicating negligible long-term 
atmospheric retention. Moreover, individual CMIP3 (2005-2006), CMIP5 (2010-2014), and 
CMIP6 (2013-2016) model runs consistently fail to replicate observed temperature trajectories 
and sea ice extent trends, exhibiting correlations (R²) near zero when compared to unadjusted 
records. A critical flaw emerges in the IPCC’s reliance on a single, low-variability Total Solar 
Irradiance (TSI) reconstruction, despite the existence of 27 viable alternatives, where higher-var-
iability options align closely with observed warming—itself exaggerated by data adjustments. 
We conclude that the anthropogenic CO₂-Global Warming hypothesis lacks empirical substanti-
ation, overshadowed by natural drivers such as temperature feedbacks and solar variability, ne-
cessitating a fundamental reevaluation of current climate paradigms. 
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1. Introduction 

The IPCC’s Sixth Assessment Report (AR6) anchors its narrative on the premise that anthropo-
genic CO₂ emissions, totaling approximately 2,000 GtC since 1750, have increased atmospheric 
CO₂ concentrations from 280 ppm to 420 ppm, contributing roughly 1 Wm⁻² of radiative forcing 
and driving a global temperature increase of 0.8-1.1°C since pre-industrial times [1]. This asser-
tion is bolstered by GCM outputs from CMIP phases 3, 5, and 6, alongside homogenized datasets 
such as NASA’s GISS and the UK’s HadCRUT4, which undergo adjustments to account for sta-
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tion biases, urban heat effects, and temporal inconsistencies. Climate scientists, including Mi-
chael E. Mann, Gavin A. Schmidt, and Zeke Hausfather, have reinforced this framework through 
proxy reconstructions (e.g., the “hockey stick” graph), model validations, and retrospective anal-
yses claiming predictive skill [2, 3, 4]. However, a growing body of peer-reviewed studies chal-
lenges the foundational assumptions of this paradigm, highlighting systematic discrepancies be-
tween model projections and unadjusted observational records, as well as questioning the causal 
primacy of CO₂-Global Warming [5, 6, 7, 8, 9, 10, 11, 12, 13]. These critiques leverage raw 
data—free from homogenization artifacts—and alternative forcings, such as solar variability and 
oceanic feedbacks, to argue that natural processes may dominate climate dynamics. This paper 
aims to rigorously test the anthropogenic CO₂-Global Warming hypothesis by integrating unad-
justed datasets with recent analytical frameworks, scrutinizing model performance, isotopic evi-
dence, and the IPCC’s solar forcing assumptions to determine whether the prevailing narrative 
withstands empirical scrutiny. 

 

2. Materials and Methods 

This study employs a suite of unadjusted observational datasets to evaluate the anthropogenic 
CO₂-Global Warming hypothesis and GCM fidelity. Temperature data include the University of 
Alabama in Huntsville (UAH) satellite-derived lower tropospheric temperature anomalies (1979-
2023), providing a global perspective with minimal surface bias [14], and the U.S. Climate Ref-
erence Network (USCRN) surface temperature records (2005-2023), a network of 114 pristine 
stations designed to eliminate urban heat island effects and instrumentation inconsistencies [15]. 
Sea ice data are sourced from the National Snow and Ice Data Center (NSIDC) Arctic sea-ice 
extent records (1979-2024), offering daily and monthly extents based on passive microwave sat-
ellite measurements [16]. Historical surface temperatures are derived from raw, unadjusted 
USHCN and GHCN station logs, spanning the contiguous U.S. and global sites, respectively, to 
assess trends without homogenization [6]. Atmospheric CO₂ and isotopic data (δ13C) are obtained 
from the Scripps CO₂ Program (1980-2019) at four stations (Barrow, Mauna Loa, South Pole, 
Samoa) [17], supplemented by proxy records from Law Dome ice cores (1000-1990) and Vostok 
ice cores (420,000 years) [18, 19]. Model outputs from CMIP5 (102 individual runs) and CMIP6 
(over 30 runs) are extracted from IPCC AR6 archives [1], covering temperature anomalies and 
ice extent projections from 1850 to 2020. Analytical methods include R² calculations to assess 
model trajectory fit against monthly observed anomalies, linear trend comparisons, and point-by-
point shape analysis to evaluate predictive accuracy beyond simple slopes. Peer-reviewed frame-
works are adopted: Koutsoyiannis et al. (2023) provide a new and advanced stochastic statistical 
method for studying the temperature-CO₂ relationships [5]; Soon et al. (2023, 2024) [8, 9] and 
Harde (2017, 2022) [13, 20] supply correlation analyses for solar forcing; and Connolly et al. 
(2023) offer rural-urban temperature differentials [6]. Statistical significance is assessed at 95% 
confidence intervals, with supplementary data (e.g., TSI reconstructions) validated against pri-
mary sources [9]. 

 

3. Results 

3.1 Anthropogenic CO₂-Global Warming Contribution and Natural Dominance 

Anthropogenic CO₂ emissions are quantified at 10 GtC per year, derived from fossil fuel com-
bustion, cement production, and land-use changes, representing approximately 4% of the 230 GtC 
annual global carbon cycle [7]. This cycle comprises 90 GtC from oceanic exchange (outgassing 
and absorption), 120 GtC from terrestrial processes (photosynthesis and respiration), and minor 
contributions from volcanic activity, as documented by Sabine et al. (2004) [21]. In contrast, the 
oceanic carbon reservoir totals 38,000 GtC, stored as dissolved CO₂, bicarbonates, and car-
bonates—a volume 19 times greater than the cumulative human emissions of 2,000 GtC since 
1750 [7]. Atmospheric CO₂ concentrations have risen from 280 ppm in the pre-industrial era (Law 
Dome, 1750) to 420 ppm in 2025 (Mauna Loa), equating to an additional 298 GtC [17, 18]. The 
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IPCC attributes this 140-ppm increase primarily to human emissions, citing a δ13C decline from 
-7.5‰ in 1980 to -8.5‰ in 2019 (data from Scripps Institution of Oceanography) as evidence of 
fossil fuel input (-28‰ signature) [17]. However, Koutsoyiannis (2024) [7] analyze proxy records 
(ice cores, tree rings) spanning 1500-2000, finding the net input signature of δ13C to the atmos-
phere at approximately -13‰ over 200 years, with minimal deviation attributable to human 
sources. This stability suggests that natural fluxes, modulated by temperature-dependent pro-
cesses such as soil respiration and oceanic outgassing, dominate atmospheric composition. Sup-
porting this, a significant 2.4 GtCO2 or about 0.7 GtC reduction in human emissions during the 
2020 COVID-19 lockdowns—equivalent to a 7% annual drop (relative to 2019)—produced no 
detectable perturbation in the Mauna Loa CO₂ curve, which rose 2.0 ppm from 414.4 ppm in 2019 
to 416.4 ppm in 2020 [22]. This resilience implies that natural sinks (oceans absorbing ~5 
GtC/year, terrestrial uptake ~3 GtC/year) rapidly neutralize the 10 GtC of human inputs, render-
ing the 4% contribution negligible against a 220 GtC natural backdrop [7]. Natural variability, 
such as El Niño-driven oceanic CO₂ releases (e.g., 5 GtC in 1998), further overshadows anthro-
pogenic signals [22]. 

 

3.2 Future CO₂ Scenarios and Socioeconomic Pathways (SSPs) 

The Shared Socioeconomic Pathways (SSPs) outline five potential futures for CO₂ emissions, 
each driven by unique societal, economic, and policy dynamics. Developed by the Intergovern-
mental Panel on Climate Change (IPCC) [1], these pathways are paired with Representative Con-
centration Pathways (RCPs) to model climate outcomes [23]. This section assesses each SSP 
based on validity (consistency with scientific evidence and trends), likelihood (feasibility given 
socioeconomic and technological factors), and frequency of use in research. The analysis priori-
tizes credible scenarios, critiques oversimplified or outdated ones and supports findings with ro-
bust data and references. 

SSP1 (Sustainability – Taking the Green Road) 

Description: A sustainable future with low population growth, rapid economic development, and 
aggressive environmental policies, achieving near-zero CO₂ emissions by 2100 under stringent 
RCPs [24]. 

Validity: Aligns with trends like renewable energy growth—solar and wind capacities increased 
10–15% annually from 2010-2020 [25]—and commitments like the Paris Agreement. However, 
it assumes rapid technological leaps and global unity, which political barriers may undermine 
[26]. 

Likelihood: Moderately likely. Goals like a 50% emissions reduction by 2030 demand unprece-
dented coordination, potentially disrupted by natural feedbacks such as temperature-driven CO₂ 
releases [5]. 

Frequency in Literature: Frequent in optimistic policy studies but less common as a baseline due 
to its ambitious requirements [27]. 

SSP2 (Middle of the Road) 

Description: A continuation of current trends with moderate population growth, economic pro-
gress, and climate policies, resulting in CO₂ emissions peaking mid-century before a slight decline 
[23]. 

Validity: Highly valid, reflecting historical patterns like gradual renewable adoption at 10–15% 
annually [25]. It captures global inertia without requiring drastic shifts. 

Likelihood: Highly likely. SSP2’s balanced path aligns with current progress and resistance, re-
maining robust despite natural CO₂ variability [5]. 

Frequency in Literature: The most-used baseline in IPCC reports and studies for its realism [28]. 
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Policy Relevance: The USGS highlights the critical role of global climate models in shaping 
adaptive policymaking for moderate scenarios like SSP2, enabling decision-makers to balance 
resource use and environmental goals [29]. 

SSP3 (Regional Rivalry – A Rocky Road) 

Description: A fragmented world with high population growth, regional conflicts, and weak co-
operation, driving high CO₂ emissions through 2100 [27]. 

Validity: Plausible, but it may exaggerate the collapse of climate efforts, given persistent global 
interdependence [8]. 

Likelihood: Less likely. Sustained rivalry is costly, potentially forcing cooperation and lowering 
SSP3’s odds. 

Frequency in Literature: Less common, often used in studies of conflict or high-risk futures [27]. 

SSP4 (Inequality – A Road Divided) 

Description: A divided world where developed regions cut emissions via technology, but devel-
oping ones emit heavily, yielding mixed global CO₂ levels [23]. 

Validity: Captures disparities, but assumes static inequality, ignoring tech diffusion. Natural CO₂ 
fluxes could overshadow regional gaps [5]. 

Likelihood: Moderately likely. Inequality persists, yet renewable growth in developing regions 
may reduce extremes. 

Frequency in Literature: Moderately used in equity or regional impact studies [30]. 

SSP5 (Fossil-Fueled Development – Taking the Highway) 

Description: Rapid fossil fuel-driven growth with minimal climate policies, leading to CO₂ emis-
sions doubling pre-industrial levels by 2100 [23]. 

Validity: Increasingly invalid as renewables rise—fossil fuels dropped from 80% to 60% of the 
energy mix since 2000 [31]—and stranded assets threaten ($1-4 trillion in losses) [32]. 

Likelihood: Highly unlikely. Trends like 30% annual electric vehicle growth [25] and natural 
variability [8] contradict SSP5’s premises. 

Frequency in Literature: Used in worst-case analyses but rarely as a baseline due to its divergence 
from reality [33]. Burgess et al. (2022) [34] note, “Simultaneously, IPCC reports also overem-
phasize catastrophic scenarios, as does broader discourse. For example, the cataclysmic Repre-
sentative Concentration Pathway 8.5 (RCP8.5) and Shared Socioeconomic Pathway 5-8.5 (SSP5-
8.5) scenarios—now widely considered implausible—account for roughly half of the scenario 
mentions in recent IPCC Assessment Reports’ impacts (Working Group II) sections, similar to 
underlying scientific literature.” Pielke and Ritchie (2021) critique RCP8.5, aligned with SSP5, 
as an implausible “business as usual” scenario due to outdated coal and growth assumptions [35]. 

Historical Use of High-Emission Scenarios 

High-emission scenarios like RCP8.5 and SSP5-8.5 have been key in climate research, especially 
for extreme impact studies. Approximately 20–30% of climate studies from 2004–2024 likely 
used these scenarios, with higher rates (30–40%) in impact-focused work and lower averages 
across broader literature as moderate scenarios gain favor [28]. RCP8.5 dominated from 2010–
2017 for its simplicity in projecting severe outcomes, though its overuse has drawn criticism [33]. 
The shift to SSP2 as a baseline reflects a focus on realistic pathways [28]. 
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Discarded Scenarios and Oversimplified Models 

Early models often oversimplified CO₂-temperature links, ignoring feedbacks and natural varia-
bility. Modern research, like Salby & Harde (2021, 2022) [36, 37] and Koutsoyiannis et al. (2023) 
[5], reveals complexities—e.g., temperature driving CO₂ mostly via the biosphere expansion and 
oceanic outgassing due to increased temperature—discarding linear scenarios for nuanced ones. 
Pielke and Ritchie (2021) [35] further critique RCP8.5’s outdated coal and growth assumptions, 
aligning with this shift. 

 

3.3 Atmospheric CO₂ Residence Time 

The IPCC’s Sixth Assessment Report (AR6) estimates an effective atmospheric CO₂ residence 
time of more than 100 years, derived from the Bern carbon cycle model, which assumes slow 
equilibration between atmospheric CO₂ and deep oceanic and terrestrial sinks [38]. This model 
posits that CO₂ uptake is limited by sink saturation, with deep ocean layers and soil carbon pools 
absorbing CO₂ over centuries, leaving approximately 25% of emissions airborne after 500 
years—a cornerstone of the IPCC’s claim that human CO₂ drives cumulative warming over long 
timescales [1].  

In stark contrast, Koutsoyiannis et al. (2023) [5] employ a mass balance approach, dividing the 
atmospheric CO₂ by the total annual flux of 230 GtC/year (comprising 80 GtC from oceanic ex-
change, 140 GtC from terrestrial processes, and 10 GtC from human sources), yielding a residence 
time of 3.5 to 4 years [7, 39]. This shorter estimate reflects the rapid turnover of CO₂ through 
natural sinks, challenging the IPCC’s prolonged retention narrative. 

Hermann Harde’s post-2016 research further supports this shorter residence time. In Harde (2017) 
[11], a two-layer model of atmosphere-ocean CO₂ exchange, incorporating absorption spectros-
copy and flux measurements, estimates a residence time of approximately 4 years, aligning 
closely with Koutsoyiannis (2024) [39].  Harde (2019) [12] refines this, using 14C bomb pulse 
data and global carbon cycle analyses to calculate an effective residence time of 3 years in pre-
industrial times and slightly increasing to no more than 4 years over the Industrial Era, arguing 
that oceanic uptake and biospheric cycling dominate over deep sink delays.  

Additionally, Harde & Salby (2021) [40] critiques IPCC models, demonstrating through radiative 
transfer and flux data that CO₂’s atmospheric lifetime is around 3 years, with natural sinks ab-
sorbing human emissions far faster than assumed. These findings corroborate empirical observa-
tions of radiocarbon (14C) decay from 1950s-1960s nuclear tests, where 14CO₂ exhibited an e-
folding time ranging from 5 to 10 years (midpoint 7.5 years) as it cycled through oceanic and 
biospheric reservoirs, a process detailed by Jacobson (2005) [10] who estimates individual CO₂ 
molecule residence at approximately 4 years via photosynthetic uptake and oceanic dissolution. 

Further evidence emerges from the 2020 COVID-19 lockdowns, where a 0.7 GtC emissions drop 
(7% relative to the 2019 human emission value) failed to alter Mauna Loa’s CO₂ curve, suggesting 
sinks adjusted within months, not decades [22]. Paleoclimate data from Vostok ice cores reinforce 
this dynamic, showing CO₂ increases lagging temperature rises by 800 years across glacial-inter-
glacial transitions, indicative of temperature-driven oceanic outgassing rather than prolonged at-
mospheric retention [19].  

The IPCC’s 120-year estimate hinges on unverified assumptions of saturated sinks, lacking direct 
flux validation, whereas the 3-5-year range reflects measured carbon cycle throughput and iso-
topic decay, undermining claims of significant human CO₂ accumulation [11, 12, 39, 40]. Table 
1 provides a detailed comparison of these residence time estimates, highlighting the stark contrast 
between model-based and empirical values. 
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Table 1. CO₂ Residence Time Estimates from Model and Empirical Sources. 

 

Table 1. Atmospheric CO₂ residence time estimates from various sources, contrasting the IPCC’s 
model-derived greater than100-year value with empirical estimates ranging from 3 to 7.5 years. 
The IPCC’s Bern model [1, 38] relies on theoretical sink saturation over centuries, while Kout-
soyiannis (2024) [39] uses an approach based on mass balance and a refined reservoir model. 
Harde’s studies [11, 12, 40] employ diverse methods—spectroscopy, 14C data, and radiative 
transfer—consistently yielding shorter times. The 14C bomb pulse data provide an observed ex-
ponential decay time, with 7.5 years as the midpoint, justifiably higher than the total CO2 resi-
dence time. These empirical values highlight rapid CO₂ cycling through natural sinks, challeng-
ing the IPCC’s long-term accumulation hypothesis. 

 

3.4 Temperature-CO₂-Global Warming Causality 

Koutsoyiannis et al. (2023) [5] challenge the IPCC’s CO₂-driven warming paradigm by applying 
stochastic causality analysis to ground and satellite data of global temperature and CO₂ measure-
ments at high temporal resolution. Their findings indicate that temperature changes precede CO₂ 
concentration increases by 6-12 months [5]. This temporal lag suggests CO₂ responds to temper-
ature via natural processes—e.g., oceanic outgassing (Henry’s Law) and enhanced soil respira-
tion—rather than driving it through radiative forcing. Paleoclimate records from the Vostok ice 
core, spanning 420,000 years, exhibit a consistent pattern: CO₂ concentrations rise approximately 
800 years after temperature increases, with amplitudes of 80-100 ppm linked to glacial-intergla-
cial transitions [19]. Modern data reinforce this inversion: the USCRN, operational since 2005, 
reports a stable +0.4°C anomaly (relative to 2005-2020 baseline) through 2023, with no discern-
ible trend despite a 40 ppm CO₂ increase from 380 ppm to 420 ppm [15]. Raw rural USHCN 
records, free from urban heat adjustments, show annual averages holding steady at approximately 
12.2°C from the 1930s (e.g., 1936 Midwest peak) to the 2020s, contradicting the expected 0.28-
0.55°C rise from CO₂-Global Warming forcing [6]. The IPCC’s 1 Wm⁻² forcing estimate, tied to 
a 0.8°C global rise (GISS), assumes CO₂ leads temperature, yet unadjusted data and causality 
analyses indicate the reverse, casting doubt on anthropogenic causation [1, 5]. These latest anal-
yses confirm the cross-correlation studies of Humlum et al. (2013) [41], and the more recent 
publications Salby & Harde (2021) [36] and (2022) [37]. All these studies indicate that tempera-
ture precedes CO2. 

 

3.5 Model Performance and Trajectory Failure 

CMIP5 models (1979-2018) generate 102 individual runs, projecting warming rates of 0.15-0.4°C 
per decade, with a multi-model mean of 0.25°C/decade [34]. In contrast, UAH satellite data rec-
ord a global lower tropospheric trend of 0.13°C/decade over the same period, falling below the 
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95% confidence interval of most runs [14]. CMIP6 models (2005-2020) escalate predictions to 
0.2-0.5°C per decade; yet USCRN data show a maximum increase of 0.1°C over 15 years, with 
annual anomalies fluctuating ±0.28°C around a +0.44°C baseline, exhibiting no statistically sig-
nificant trend (p > 0.05) [15]. Point-by-point trajectory analysis reveals deeper flaws: R² values 
for individual CMIP5 runs against UAH monthly anomalies (e.g., capturing the 1998 El Niño 
spike of +0.2°C or the 2010s pause) range from 0.05 to 0.3, indicating near-zero correlation with 
observed variability [42]. McKitrick and Christy (2018) [42] find 90% of CMIP5 runs overesti-
mate tropospheric warming, with no strand accurately tracing the shape of temperature fluctua-
tions. Arctic sea ice extent, a key model diagnostic, averages 4.4 million km² since 2007 (NSIDC), 
with interannual swings from 3.4 million km² (2012) to 5.1 million km² (2009), defying CMIP 
projections of a 20-50% decline (2-3% per decade) post-2007 [1, 16]. Raw rural USHCN data, 
untainted by urban heat adjustments, maintain a consistent 12.2°C annual average from the 1930s 
Dust Bowl to the 2020s, while CMIP6 outputs predict 13.3-14.4°C by 2020, a 1.1-2.2°C overes-
timate [6].  

These discrepancies extend beyond linear trends to fundamental shape mismatches—models fail 
to replicate natural oscillations (e.g., PDO, AMO) or regional stability, highlighting a systemic 
inability to reflect real-world dynamics [8, 43]. 

A significant reason for this overestimation lies in the models’ exaggerated response to CO₂. 
CMIP5 and CMIP6 models assume a climate sensitivity (the temperature increase per doubling 
of CO₂) ranging from 2.0°C to 4.5°C, with a best estimate around 3°C, far exceeding the observed 
global warming of approximately 0.8-1.1°C since pre-industrial levels despite a CO₂ increase 
from 280 ppm to 420 ppm (a ~50% rise) [1, 42]. This discrepancy suggests models amplify the 
direct CO₂ forcing effect (approximately 3.7 Wm⁻² per doubling) through excessive positive feed-
back mechanisms, particularly water vapor and cloud feedbacks, which are theorized to double 
or triple the base warming [10]. However, empirical data, such as the stable USCRN temperatures 
and UAH satellite trends, indicate these feedbacks are either weaker or offset by negative feed-
backs (e.g., cloud albedo increases) not adequately captured [6, 14]. Harde (2017) [20] suggests 
a significantly smaller water vapor feedback and a negative evaporation feedback. Models also 
neglect significant natural variability, including solar cycles and ocean-atmosphere oscillations 
(e.g., PDO, AMO), which Soon et al. (2023) [8] show correlate strongly with temperature (R² = 
0.7-0.9) compared to CO₂’s weaker link (R² = 0.3-0.5). Additionally, GCMs fail to account for 
regional heterogeneity, over-relying on global averages, and miss chaotic dynamics, as Scafetta 
(2021) [44] notes with non-climatic biases in temperature records. These shortcomings—overes-
timated sensitivity, flawed feedback assumptions, omission of natural drivers, and inability to 
model chaos—explain why models predict a 1.1-2.2°C rise (e.g., CMIP6’s 13.3-14.4°C by 2020) 
while unadjusted data show stability around 12.2°C [6, 42]. Ultimately, even when these models 
occasionally align with observed outcomes, their predictions stem from flawed assumptions ra-
ther than accurate physics, as they remain unvalidated against real-world data and have been re-
peatedly falsified across multiple metrics, underscoring the chaotic complexity of climate far be-
yond their current capabilities [6, 8, 42]. 

 

3.6 Solar Forcing and IPCC TSI Assumptions 

Soon et al. (2023) [8] correlate Total Solar Irradiance (TSI) with Northern Hemisphere land sur-
face temperatures across 16 independent datasets (1850-2018), including thermometer records 
(HadCRUT raw), tree ring proxies, and ice core reconstructions, yielding R² values of 0.7-0.9, 
significantly outperforming CO₂-Global Warming correlations (R² = 0.3-0.5) [8]. Building on 
this, Soon et al. (2024) [9] analyze 27 distinct TSI reconstructions derived from satellite data (e.g., 
ACRIM1, ACRIM2, PMOD, Nimbus-7) since 1978, revealing a spectrum of variability ampli-
tudes and trends. Low-variability reconstructions (e.g., PMOD, adopted by IPCC AR6) suggest 
a ΔTSI of ~0.1 Wm⁻² per century, contributing a negligible 0.05 Wm⁻² forcing since 1850 [1]. 
Conversely, higher-variability options (e.g., ACRIM1+2 composites) indicate ΔTSI of 0.5-1 
Wm⁻², translating to 0.1-0.2°C direct warming, with amplified effects via cloud albedo feedbacks 
potentially reaching 0.5-0.8°C—matching or exceeding observed trends without CO₂-Global 
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Warming [9, 13]. The IPCC’s selection of PMOD rests on no empirical consensus; calibration 
disputes (e.g., ACRIM gap in 1989-1992) and instrument degradation corrections remain unre-
solved, with Soon et al. (2024) [9] arguing that higher-variability reconstructions better align with 
unadjusted temperature records (e.g., 0.5°C rural warming since 1850). For instance, solar max-
ima (e.g., 1950s, 1980s) coincide with warming peaks, while minima (e.g., 1970s) align with 
cooling, a pattern CMIP models—tuned to low TSI—fail to capture [8]. This uncertainty under-
mines IPCC attribution, as plausible TSI scenarios account for 50-100% of observed warming, 
negating CO₂’s presumed dominance [9]. In addition, Harde (2022) [13], explains the important 
role of solar induced cloud feedback contributing about 70% to global warming over the last 
century, while CO2 can account for no more than 30%. 

 

3.7 Data Adjustments 

NOAA’s USHCN dataset undergoes homogenization, a process aimed at correcting perceived 
biases in raw temperature records to account for non-climatic influences such as station moves, 
instrument changes, and urban heat island (UHI) effects. This involves statistical techniques like 
pairwise comparison, where a target station’s record is adjusted based on differences with neigh-
boring reference stations assumed to be unaffected by similar biases, and the reference station 
method, which uses a composite of nearby stations to estimate and remove discontinuities [6]. 
GISS applies similar adjustments to GHCN data, employing a hybrid approach that combines 
automated algorithms with manual interventions, cooling 1880s global means by ~1°C (from 12-
13°C raw to 11-12°C) and warming 2020s by 0.5°C, yielding a 0.8°C rise, while unadjusted rural 
stations suggest a 0.2-0.5°C increase [42]. These adjustments rely on metadata (e.g., station his-
tory) and statistical assumptions about spatial coherence, often using a 1200 km search radius to 
pair stations, which can introduce errors if metadata is incomplete or if regional climate shifts are 
misattributed to local changes [9, 45]. 

The applicability of these homogenization techniques is contentious. Pairwise methods assume 
that most temperature changes between stations are due to non-climatic factors, but this overlooks 
natural variability (e.g., El Niño, PDO) that can synchronously affect multiple stations, leading 
to over-corrections [6]. The UHI effect, a key target for adjustment, is often overstated; rural 
USHCN data show stability at 12.2°C from the 1930s to 2020s, suggesting minimal urban influ-
ence when properly isolated [6], yet adjustments still reduce 1930s peaks (e.g., 1936 Kansas from 
12.8°C to 11.7-12.2°C) and boost 2020s values (12.2°C to 12.5-12.8°C), creating an artificial 
0.56-1.11°C trend [6]. Mann et al. (1998) [2] reconstruct a “hockey stick” temperature profile 
using tree ring proxies, flattening medieval warmth (1000-1400 AD) to near-modern levels; raw 
proxies (e.g., Greenland ice cores, European chronicles) indicate 0.5°C higher temperatures, con-
sistent with Soon et al. (2023) [8], questioning the validity of proxy-based adjustments when 
applied to instrumental records. The validity of these adjusted results is further undermined by 
the lack of independent validation; adjusted datasets like HadCRUT4 and GISS are tuned to 
match CMIP model outputs (e.g., 1°C warming by 2020), but unadjusted records—USCRN 
(+0.44°C, no trend) and rural USHCN (12.2°C stable)—reveal minimal change, suggesting ad-
justments exaggerate trends to fit preconceived narratives [6, 15]. 

A critical issue is the effect on spatial interpolation. The irregular distribution of weather stations, 
with dense coverage in urban areas and sparse representation in remote regions, necessitates in-
terpolation to create regular grids for global temperature analyses (e.g., GISS 2x2° grid). Homog-
enization alters raw data before interpolation, potentially amplifying biases. For instance, cooling 
1880s rural stations to match urban trends can skew interpolated values, overestimating warming 
in under-sampled regions [42]. Soon et al. (2024) [9] note that NOAA’s specific adjustments 
(e.g., cooling 1936 Kansas peaks like 49.4°C in Alton by 0.56-1.11°C) inflate trends to align with 
models, a practice unsupported by raw data integrity, especially when interpolated across vast, 
data-scarce areas like the Arctic or oceans. This suggests that homogenization, rather than im-
proving spatial representation, may introduce systematic errors, particularly in regions with few 
stations, where interpolated grids rely heavily on adjusted data, undermining the spatial fidelity 
of global temperature reconstructions [6, 9]. 
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4. Discussion 

4.1 Negligible Anthropogenic CO₂-Global Warming Impact 

Human CO₂ emissions, at 10 GtC/year or 4% of the 230 GtC annual cycle, pale against oceanic 
(38,000 GtC) and terrestrial reservoirs [7, 39]. Koutsoyiannis (2024) [7] demonstrates isotopic 
stability (net input signature of δ13C ≈ -13‰ over 200 years), resulting in a 1‰ shift in atmos-
pheric δ13C content (-7.5‰ to -8.5‰)—since 1980 despite 80 ppm added CO₂, implying natural 
fluxes—e.g., oceanic outgassing (90 GtC/year)—swamp the -28‰ fossil fuel signal [7, 17]. For 
an explanation of this shift, see also Harde (2019) [12]. Temperature-driven CO₂ release (0.2 
ppm/0.1°C) from AIRS data and paleoclimate lags (800 years) suggest a feedback loop where 
warming liberates CO₂, not vice versa [5, 19]. The 2020 lockdown reduction (0.7 GtC, 7% drop 
relative to the 2019 annual human emissions) produced no Mauna Loa CO2 curve deviation, as 
sinks absorbed the drop within months, consistent with a 3.5-to-4-year residence time [11, 12, 22, 
39, 40]. Natural events—e.g., El Niño (5 GtC) or volcanic pulses (0.1 GtC)—further eclipse hu-
man inputs, rendering the 4% contribution negligible in atmospheric dynamics [22]. 

 

4.2 Systematic Model Failure and the Complexity of Causal Links: A “Hens and Eggs” 
Perspective on Stochasticity in Climate Dynamics 

CMIP5 and CMIP6 models fail comprehensively, with no run matching observed temperature or 
ice extent trajectories [42]. R² values near zero (0.05-0.3) against UAH monthly anomalies reflect 
an inability to capture natural oscillations—e.g., 1998’s +0.2°C spike or 2010s flatness—driven 
by ENSO or AMO [14, 43]. These oscillations are not mere background noise but critical mani-
festations of the climate’s stochastic, feedback-driven nature. To frame this complexity, consider 
the “hens and eggs” metaphor from Koutsoyiannis et al. (2023) [5]: just as it’s unclear whether 
the hen precedes the egg or the egg the hen, the causal relationship between temperature and CO₂ 
is bidirectional and cyclical, defying the linear assumptions embedded in climate models. This 
stochastic interplay—where feedbacks amplify small changes unpredictably—eludes the deter-
ministic frameworks of CMIP models, contributing to their systematic failures. For instance, 
USCRN’s stability (+0.1°C max, 2005-2023) and Arctic ice’s post-2007 plateau (4.4 million km²) 
defy CMIP’s aggressive 0.2-0.5°C/decade warming and 20-50% ice loss predictions [15, 16], 
highlighting how models struggle to replicate the real world’s inherent variability. 

The models’ shortcomings are compounded by structural biases. Shared code bases (50% overlap 
across HadGEM3, CESM2, etc.) and CO₂-centric assumptions bias runs toward warming, violat-
ing the independence required for multi-model means [10]. This overreliance on CO₂ as the pri-
mary driver ignores alternative causal dynamics. Koutsoyiannis demonstrates temperature-CO₂ 
lags that contradict model physics, showing that temperature changes often precede CO₂ increases 
by 6–12 months [5, 36, 37, 41, 46]. This finding evokes the “hens and eggs” dilemma: rather than 
CO₂ unilaterally driving temperature, the two variables sustain a mutual, reinforcing cycle, with 
temperature shifts potentially triggering CO₂ responses. Such bidirectional causality underscores 
the stochastic nature of climate dynamics, which models oversimplify by assuming a one-way, 
CO₂-to-temperature link. Meanwhile, Soon et al. (2023) [8] and Connolly et al. (2023) [6] high-
light mismatches with solar and rural data, where solar variability correlates more strongly with 
temperature (R² = 0.7-0.9) than CO₂ (R² = 0.3-0.5). Through the “hens and eggs” lens, this sug-
gests external chaotic drivers—like solar cycles—disrupt the linear cause-effect paradigm, further 
exposing the models’ inability to account for competing influences. 

These failures extend beyond trends to fundamental structural flaws—models miss the climate’s 
stochastic nature [43]. By anchoring their physics to a unidirectional CO₂-to-temperature rela-
tionship, they overlook the web of feedback loops where small perturbations can cascade unpre-
dictably, much like hens and eggs perpetuate each other in a self-sustaining cycle. The shared 
code bases and deterministic frameworks amplify this flaw, preventing models from capturing 
the emergent, chaotic variability seen in natural oscillations like ENSO or AMO. Koutsoyiannis 
(2010) [47] argues that climate systems exhibit long-range dependencies and rapid climate 
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change—features of stochastic processes—that defy reductionist modeling approaches. Without 
embracing this complexity, CMIP models remain disconnected from reality, as evidenced by their 
persistent overestimation of warming trends and poor fits to observed trajectories. The “hens and 
eggs” metaphor thus serves as a powerful critique: climate dynamics are not a simple chain of 
causation but a tangled network of mutual interactions, where stochasticity reigns and determin-
istic models falter. 

 

4.3 IPCC’s Unsupported TSI Assumption 

The IPCC’s adoption of a low-variability TSI (PMOD, ΔTSI ≈ 0.1 Wm⁻²/century) assumes solar 
forcing contributes only 0.05 Wm⁻² since 1850, relegating it to a minor role [1]. Soon et al. (2024) 
[9] identify 27 TSI reconstructions, with high-variability options (e.g., ACRIM composites, ΔTSI 
≈ 0.5-1 Wm⁻²) aligning with unadjusted warming (0.5°C rural, 1850-2020) via direct heating and 
feedbacks (e.g., cosmic ray-cloud modulation). Calibration disputes—e.g., ACRIM’s 1989-1992 
gap bridged by higher trends versus PMOD’s smoothing—remain unresolved, with no peer-re-
viewed consensus favoring PMOD [6, 9]. Solar cycles (11-year, 60-year) correlate with warming 
(1910-1940, 1980-2000) and cooling (1960s-1970s) phases, absent in CMIP runs [8]. The IPCC’s 
arbitrary choice biases attribution toward CO₂-Global Warming, ignoring plausible TSI scenarios 
that explain 50-100% of observed trends without adjustments [9]. 

 

4.4 Data Manipulation and Attribution Bias 

NOAA’s USHCN adjustments—cooling 1930s (e.g., 12.8°C to 11.7°C) and warming 2020s 
(12.2°C to 12.8°C)—inflate a 0.56-1.11°C trend, aligning with CMIP’s 1°C century rise [6, 15]. 
This homogenization process uses pairwise comparison and reference station methods, assuming 
non-climatic biases (e.g., station moves, instrument changes) dominate temperature differences, 
yet it often misattributes natural variability (e.g., PDO, El Niño) to local artifacts, leading to over-
corrections [6, 15]. GISS mirrors this, shifting 1880s from 12-13°C raw to 11-12°C and boosting 
2020s, amplifying warming to 0.8°C; rural raw data suggest 0.2-0.5°C, indicating adjustments 
exaggerate trends to match model expectations [42]. The applicability of these techniques is du-
bious—metadata errors and incomplete station histories can mislead adjustments, while the urban 
heat island (UHI) effect is often overstated, as rural USHCN stability at 12.2°C suggests minimal 
urban impact [6, 15]. Mann’s hockey stick flattens medieval warmth (0.5°C above modern per 
Soon et al., 2023 [8]), contradicted by unadjusted proxies (e.g., Greenland GISP2), raising valid-
ity concerns when proxy adjustments are extended to instrumental data without validation. 

Spatial interpolation exacerbates these issues. The irregular station network, dense in urban areas 
and sparse in remote regions, requires gridding (e.g., GISS 2x2° grid), where homogenized data 
feed into algorithms like kriging or spline interpolation. Adjusting raw data before gridding—
e.g., cooling 1930s rural stations to align with urban trends—can bias interpolated values, over-
estimating warming in data-scarce areas like the Arctic or oceans [42]. Soon et al. (2024) [9] 
document NOAA’s specific manipulations, such as cooling 1936 Kansas peaks (49.4°C) by 0.56-
1.11°C, tailoring data to CMIP outputs rather than reflecting reality. This practice, unsupported 
by raw integrity, suggests homogenization introduces systematic errors, particularly in interpola-
tion, where sparse station coverage amplifies adjusted biases, distorting global temperature fields 
[6, 9]. Without these alterations, warming shrinks, and TSI suffices—no CO₂-Global Warming 
needed [9]. 

 

4.5 Implications for the Anthropogenic Hypothesis 

The IPCC’s CO₂-Global Warming narrative collapses under scrutiny. Human emissions (4%) 
vanish in natural fluxes, models fail predictive tests, TSI uncertainty negates CO₂-Global Warm-
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ing primacy, and adjusted data distort reality [5, 6, 8, 9, 42]. Natural drivers—temperature feed-
backs, solar variability—explain trends without anthropogenic forcing, falsifying the hypothesis 
[9, 42]. 

 

5. Conclusion 

The anthropogenic CO₂-Global Warming hypothesis, as articulated by the Intergovernmental 
Panel on Climate Change (IPCC) and supported by researchers such as Mann, Schmidt, and Haus-
father, lacks robust empirical support when subjected to rigorous scrutiny. This analysis integrates 
unadjusted observational data and recent peer-reviewed studies to demonstrate that the assertion 
of human CO₂ emissions as the primary driver of climate variability since 1750 is not substanti-
ated. Instead, natural processes—including temperature feedbacks, solar variability, and oceanic 
dynamics—provide a more consistent explanation for observed trends. 

A key finding is the minimal contribution of anthropogenic CO₂ emissions to the global carbon 
cycle. Human emissions, quantified at 10 GtC per year or approximately 4% of the 230 GtC 
annual flux, are significantly outweighed by natural exchanges—80 GtC from oceanic processes 
and 140 GtC from terrestrial respiration and photosynthesis [7]. Koutsoyiannis (2024) [7] provide 
isotopic evidence, showing a stable δ13C net input signature of approximately -13‰ over two 
centuries, resulting in a 1‰ shift in the δ13C atmospheric content since 1980 despite an 80 ppm 
CO₂ increase [7, 12]. This limited deviation, relative to the -28‰ fossil fuel signature, indicates 
that natural fluxes predominantly govern atmospheric composition, a conclusion supported by the 
2020 COVID-19 lockdown data, where a 7% reduction from the 2019 human emissions (0.7 GtC) 
produced no detectable change in Mauna Loa’s CO₂ curve [22]. Koutsoyiannis (2024) [39] esti-
mate a CO₂ residence time of 3.5 to 4 years via a mass balance approach (230 GtC/year flux), 
contrasting with the IPCC’s model-based 120-year (or more) projection [38, 39]. Harde’s studies 
(2017, 2019, 2021) [11, 12, 40] reinforce this, deriving residence times of 3 to 4 years, collectively 
challenging the hypothesis of significant long-term human CO₂ retention. 

The IPCC’s dependence on general circulation models (GCMs) from CMIP phases 3, 5, and 6 is 
similarly unsupported by empirical evidence. McKitrick and Christy (2018) [42] demonstrate that 
90% of CMIP5 runs overestimate tropospheric warming, with R² values of 0.05-0.3 when com-
pared to UAH satellite data, which record a 0.13°C/decade trend against model projections of 
0.15-0.5°C/decade. This mismatch extends to Arctic sea ice, where NSIDC data show a stable 
4.4 million km² average since 2007, contradicting CMIP’s predicted 20-50% decline [1, 16]. Un-
adjusted rural USHCN data maintain a consistent 12.2°C from the 1930s to 2020s [6, 15], while 
CMIP6 predicts 13.3-14.4°C, a 1.1-2.2°C overestimation linked to an assumed climate sensitivity 
(2.0-4.5°C per CO₂ doubling) that exceeds observed warming (0.8-1.1°C for a 50% CO₂ rise) [1, 
6, 15]. Humlum et al. (2013) [41], Salby (2013) [46], Salby & Harde (2021, 2022) [36, 37], and 
Koutsoyiannis et al. (2023) [5] further reveal that temperature changes precede those of CO₂ in-
creases by 6–12 months, suggesting a feedback-driven system where warming induces CO₂ re-
lease through oceanic outgassing and soil respiration, rather than CO₂ driving temperature. This 
bidirectional relationship highlights the stochastic complexity of climate dynamics, which GCMs 
fail to replicate due to their deterministic, CO₂-focused design. 

Solar forcing presents a viable alternative mechanism. Soon et al. (2023) [8] report R² values of 
0.7-0.9 between Total Solar Irradiance (TSI) and Northern Hemisphere temperature records 
(1850-2018), surpassing CO₂’s correlation of 0.3-0.5. The Harde (2022) [18] model study agreed 
and reported a Pearson correlation coefficient r of 0.95. Soon et al. (2024) [15] analyze 27 TSI 
reconstructions, finding that high-variability options (e.g., ACRIM, ΔTSI ≈ 0.5-1 Wm⁻²) align 
with unadjusted warming trends (0.5°C rural since 1850), potentially explaining 50-100% of ob-
served changes via direct heating and cloud albedo feedbacks. The IPCC’s selection of a low-
variability PMOD reconstruction (ΔTSI ≈ 0.1 Wm⁻²), contributing only 0.05 Wm⁻² since 1850, 
lacks empirical consensus amid unresolved calibration issues, underrepresenting solar influence 
in favor of CO₂ attribution [1, 9]. 
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Data adjustments further weaken the IPCC’s position. Connolly et al. (2023) [6] and Soon et al. 
(2024) [9] document how NOAA and GISS homogenization—reducing 1930s peaks (e.g., 12.8°C 
to 11.7°C) and increasing 2020s values (12.2°C to 12.8°C)—amplify trends to align with CMIP 
outputs, converting a 0.2-0.5°C rural increase into a 0.8-1°C global signal. This adjustment is 
inconsistent with raw USCRN stability (+0.4°C, no trend) and USHCN consistency (12.2°C), 
indicating a bias toward model conformity rather than observational fidelity [6, 15]. Mann et al.’s 
(1998) [2] “hockey stick” reconstruction, which suppresses medieval warmth contradicted by un-
adjusted proxies, exemplifies this methodological issue [8]. 

These results—derived from Koutsoyiannis’ causality and residence time analyses [5, 7, 39], 
Soon’s solar correlations [8], Connolly’s unadjusted data assessments [6, 9], and Harde’s carbon 
cycle evaluations [11, 12, 40]—collectively indicate that natural drivers dominate climate varia-
bility. Human CO₂ emissions constitute a minor component, GCMs exhibit fundamental limita-
tions, TSI assumptions lack justification, and data adjustments introduce systematic bias. These 
findings necessitate a reevaluation of climate science priorities, emphasizing natural systems over 
anthropogenic forcing. 
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